Reception	
Number	Counts objects, actions and sounds
	Is able to subitise (recognise how many objects there are in a small group without counting)
	Is able to link the number symbol (numeral) with its cardinal number value
	Can count beyond ten
	Is able to compare numbers
	Understands the 'one more than/one less than' relationship between consecutive numbers
	Is able to explore the composition of numbers to 10
	Automatically recalls number bonds for numbers 0-10
	Automatically recalls (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10, including double facts (ELG)
	Has a deep understanding of number to 10, including the composition of each number (ELG)
	Is able to subitise (recognise quantities without counting) up to 5 (ELG)
Numerical Patterns	Can select, rotate and manipulate shapes in order to develop spatial reasoning skills
	Investigates composing and decomposing shapes and recognises a shape can have other shapes within it, just as numbers can
	Is able to continue, copy and create repeating patterns
	Can compare length, weight and capacity

	Can compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity (ELG)
Is able to explore and represent patterns within numbers up to 10, including evens and odds,	
double facts and how quantities can be distributed equally (ELG)	
Verbally counts beyond 20, recognising the pattern of the counting system (ELG)	

	Year 1	Year 2
Place Value	Count to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number Count and read numbers to 100 in numerals Count and write numbers to 100 in numerals Count in multiples of twos, fives and tens from 0 Identify one more and one less of a given number Identify and represent numbers using objects and pictorial representations including the number line, and use the language of: equal to, more than, less than (fewer), most, least Read and write numbers from 1 to 20 in numerals Read and write numbers from 1 to 20 in words Count in twos, fives and tens to solve problems e.g. count the number of chairs in a diagram when the chairs are organised in 7 rows of 5 by counting in fives	Count in steps of 2, 3, and 5 from 0, and in tens from any number, forward and backward Recognise the place value of each digit in a two-digit number (tens, ones) Identify, represent and estimate numbers using different representations, including the number line Compare and order numbers from 0 up to $100 ;$ use $<,>$ and $=$ signs Read and write numbers to at least 100 in numerals Read and write numbers to at least 100 in words Use place value and number facts to solve problems Partition two-digit numbers into different combinations of tens and ones using apparatus if needed e.g. 23 is the same as 2 tens and 3 ones which is the same as 1 ten and 13 ones

	Partition and combine numbers using apparatus if required e.g. partition 76 into tens and ones; combine 6 tens and 4 ones	Use reasoning about numbers and relationships to solve more complex problems and explain his/her thinking e.g. $29+17=15+$ $4+$?; 'Together Jack and Sam have $£ 14$. Jack has $£ 2$ more than Sam. How much money does Sam have?' etc. Recall the multiples of 10 below and above any given 2 digit number e.g. say that for 67 the multiples are 60 and 70
Addition \& Subtraction	Read and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs Write mathematical statements involving addition (+), subtraction (-) and equals (=) signs Demonstrate an understanding of the commutative law (e.g. 3 $+2=5$, therefore $2+3=5$) Demonstrate an understanding of inverse relationships involving addition and subtraction (e.g. if $3+2=5$, then $5-2$ =3) Recall at least four of the six number bonds for 10 and reason about associated facts (e.g. $6+4=10$, therefore $4+6=10$ and $10-6=4$) Represent and use number bonds within 20 Represent and use subtraction facts within 20 Add one-digit and two-digit numbers to 20, including zero Subtract one-digit and two-digit numbers to 20, including zero	Solve problems with addition and subtraction using concrete objects and pictorial representations, including those involving numbers, quantities and measures Solve problems with addition and subtraction applying his/her increasing knowledge of written methods and mental methods where regrouping may be required Recall all number bonds to and within 10 and use these to reason with and calculate bonds to and within 20, recognising other associated additive relationships (e.g. If $7+3=10$, then $17+3=$ 20; if $7-3=4$, then $17-3=14$; leading to if $14+3=17$, then $3+$ $14=17,17-14=3$ and $17-3=14$) Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 Add and subtract numbers where no regrouping is required, using concrete objects, pictorial representations, and mentally, including a two-digit number and one Add and subtract numbers using concrete objects, pictorial representations, and mentally, including a two-digit number and tens

	Solve one-step problems that involve addition, subtraction and missing numbers using concrete objects and pictorial representations	Add and subtract numbers using concrete objects, pictorial representations, and mentally, including two two-digit numbers Add and subtract numbers using concrete objects, pictorial representations, and mentally, including adding three one-digit numbers Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems Recall doubles and halves to 20 e.g. knowing that double 2 is 4 , double 5 is 10 and half of 18 is 9 Use estimation to check that his/her answers to a calculation are reasonable e.g. knowing that $48+35$ will be less than 100 Solve missing number problems using addition and subtraction
Multiplication \& Division	Solve one-step problems involving multiplication by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher Solve one-step problems involving division by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher	Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot

		Solve problems involving multiplication and division, using concrete materials and mental methods Solve problems involving multiplication and division, using arrays, repeated addition and multiplication and division facts, including problems in contexts e.g. knowing that $2 \times 7=14$ and $2 \times 8=16$, explains that making pairs of socks from 15 identical socks will give 7 pairs and one sock will be left Use multiplication and division facts for 2,5 and 10 to make deductions outside known multiplication facts e.g. know that multiples of 5 have one digit of 0 or 5 and use this to reason that 18×5 cannot be 92 as it is not a multiple of 5 Solve word problems involving multiplication and division with more than one step e.g. which has the most biscuits, 4 packets of biscuits with 5 in each packet or 3 packets of biscuits with 10 in each packet Recognise the relationships between addition and subtraction and rewrite addition statements as simplified multiplication statements e.g. $10+10+10+5+5=3 \times 10+2 \times 5=4 \times 10$
Fractions	Recognise, find and name a half as one of two equal parts of an object, shape or quantity. Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity.	Recognise, find, name and write fractions $1 / 3,1 / 4,2 / 4$ and $3 / 4$ of a length, shape, set of objects or quantity and demonstrate understanding that all parts must be equal parts of the whole Write simple fractions for example, $1 / 2$ of $6=3$ and recognise the equivalence of $2 / 4$ and $1 / 2$
Measurement	Compare, describe and solve practical problems for lengths and heights e.g. long/short, longer/shorter, tall/short, double/half	Choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); mass (kg / g); temperature (${ }^{\circ} \mathrm{C}$); capacity (litres $/ \mathrm{ml}$) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels

	Compare, describe and solve practical problems for mass/weight e.g. heavy/light, heavier than, lighter than Compare, describe and solve practical problems for capacity and volume e.g. full/empty, more than, less than, half, half full, quarter Compare, describe and solve practical problems for time e.g. quicker, slower, earlier, later Measure and begin to record mass/weight Measure and begin to record capacity and volume Measure and begin to record time (hours, minutes, seconds) Recognise and know the value of different denominations of coins and notes Sequence events in chronological order using language e.g. before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening Recognise and use language relating to dates, including days of the week, weeks, months and years Tell the time to the hour and half past the hour and draw the hands on a clock face to show these times Measure and begin to record length/height	Compare and order lengths, mass, volume/capacity and record the results using >, < and = Recognise and use symbols for pounds ($£$) and pence (p); combine amounts to make a particular value Find different combinations of coins that equal the same amounts of money Solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change Compare and sequence intervals of time Tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times Remember the number of minutes in an hour and the number of hours in a day Read scales in divisions of ones, twos, fives and tens Read scales where not all numbers on the scale are given and estimate points in between Read the time on a clock to the nearest 15 minutes
Shape	Recognise and name common 2-D shapes e.g. rectangles (including squares), circles and triangles	Identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line

\(\left.\left.$$
\begin{array}{|l|l|l|}\hline & & \begin{array}{l}\text { Recognise and name common 3-D shapes e.g. cuboids } \\
\text { (including cubes), pyramids and spheres }\end{array} \\
& & \begin{array}{l}\text { Identify and describe the properties of 3-D shapes, including the } \\
\text { number of edges, vertices and faces }\end{array} \\
\text { Name some common 2-D and 3-D shapes from a group of shapes } \\
\text { or from pictures of the shapes and describe some of their } \\
\text { properties (e.g. triangles, rectangles, squares, circles, cuboids, } \\
\text { cubes, pyramids and spheres) } \\
\text { Identify 2-D shapes on the surface of 3-D shapes e.g. a circle on a } \\
\text { cylinder and a triangle on a pyramid }\end{array}
$$\right] \begin{array}{l}Compare and sort common 2-D and 3-D shapes and everyday \\
objects describing similarities and differences e.g. find 2 different \\
2-D shapes that only have one line of symmetry; that a cube and a \\
cuboid have the same number of edges, faces and vertices and \\

describe what is different about them\end{array}\right]\)| Order and arrange combinations of mathematical objects in |
| :--- |
| patterns and sequences |
| Position \& Direction |

